Banach spaces without approximation property

نویسندگان

چکیده

منابع مشابه

The Lidskii Trace Property and the Nest Approximation Property in Banach Spaces

For a Banach space X, the Lidskii trace property is equivalent to the nest approximation property; that is, for every nuclear operator on X that has summable eigenvalues, the trace of the operator is equal to the sum of the eigenvalues if and only if for every nest N of closed subspaces of X, there is a net of finite rank operators on X, each of which leaves invariant all subspaces in N , that ...

متن کامل

Kergin approximation in Banach spaces

We explore the convergence of Kergin interpolation polynomials of holomorphic functions in Banach spaces, which need not be of bounded type. We also investigate a case where the Kergin series diverges. Kergin interpolation is a generalization of both Lagrange interpolation in the one dimensional case, and the Taylor polynomial in the case where all interpolation points coincide. In several vari...

متن کامل

Diophantine Approximation in Banach Spaces

In this paper, we extend the theory of simultaneous Diophantine approximation to infinite dimensions. Moreover, we discuss Dirichlet-type theorems in a very general framework and define what it means for such a theorem to be optimal. We show that optimality is implied by but does not imply the existence of badly approximable points.

متن کامل

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

متن کامل

The Complete Continuity Property in Banach Spaces

Let X be a complex Banach space. We show that the following are equivalent: (i) X has the complete continuity property, (ii) for every (or equivalently for some) 1 < p < ∞, for f ∈ h(D, X) and rn ↑ 1, the sequence frn is p-Pettis-Cauchy, where frn is defined by frn(t) = f(rne ) for t ∈ [0, 2π], (iii) for every (or equivalently for some) 1 < p < ∞, for every μ ∈ V (X), the bounded linear operato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functional Analysis and Its Applications

سال: 1983

ISSN: 0016-2663,1573-8485

DOI: 10.1007/bf01077865